Model validation for control and controller validation in a prediction error identification framework - Part I: theory

نویسندگان

  • Michel Gevers
  • Xavier Bombois
  • Benoît Codrons
  • Gérard Scorletti
  • Brian D. O. Anderson
چکیده

We propose a model validation procedure that consists of a prediction error identi6cation experiment with a full order model. It delivers a parametric uncertainty ellipsoid and a corresponding set of parameterized transfer functions, which we call prediction error (PE) unceminty set. Such uncertainty set differs from the classical uncertainty descriptions used in robust control analysis and design. We develop a robust control analysis theory for such unceminty sets, which covers two distinct aspects: (1) Controller validation. We present necessary and sufficient conditions for a specific controller to stabilize-or to achieve a given level of performance with-all systems in such PE uncertainty set (2) Model validationfor robust control. We present a measure for the size of such PE uncertainty set that is directly connected to the size of a set controllers that stabilize all systems in the model uncertainty set This allows us to establish that one uncertainty set is better tuned for robust control design than another, leading to control-oriented validation objectives. O 2002 Elsevier Science Ltd. All rights resewed. Keywordx System identification; Identification for robust control; Model validation; Controller validation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model validation for control and controller validation in a prediction error identification framework - Part II: illustrations

In this paper, we illustrate our new results on model validation for control and controller validation in a prediction error identification framework, developed in a companion paper (Gevers et al., 2002), through two realistic simulation examples, covering widely different control design applications. The first is the control of a flexible mechanical system (the Landau benchmark example) with a...

متن کامل

Hysteresis Modeling, Identification and Fuzzy PID Control of SMA Wire Actuators Using Generalized Prandtl-Ishlinskii Model with Experimental Validation

In this paper, hysteretic behavior modeling, system identification and control of a mechanism that is actuated by shape memory alloy (SMA) wires are presented. The mechanism consists of two airfoil plates and the rotation angle between these plates can be changed by SMA wire actuators. This mechanism is used to identify the unknown parameters of a hysteresis model. Prandtl–Ishlinskii method is ...

متن کامل

Identification for control of multivariable systems: Controller validation and experiment design via LMIs

This paper presents a new controller validation method for linear multivariable time-invariant models. Classical prediction error system identification methods deliver uncertainty regions which are nonstandard in the robust control literature. Our controller validation criterion computes an upper bound for the worst case performance, measured in terms of the H∞-norm of a weighted closed loop tr...

متن کامل

Model Predictive Control System Design using ARMAX Identification Method for Car-following Behavior

The control of car following is essential due to its safety and its operational efficiency. For this purpose, this paper builds a model of car following behavior based on ARMAX structure from a real traffic dataset and design a Model Predictive Control (MPC) system. Based on the relative distance and relative acceleration of each instant, the MPC predicts the future behavior of the leader vehic...

متن کامل

Fuzzy Logic Control of a Switched Reluctance Motor

Because of extreme local saturation at pole tips of excited phase and uncircular shape of rotor and stator, a Swithed Reluctance Motor (SRM) does not have a simple and accurate mathematical model. Therefore, the output control of this motor requires a robust controller which is not based on an accurate model of the process. Fuzzy controllers, to some extent, will satisfy these requirements. Tet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2003